Convolutional Neural Network to Model Articulation Impairments in Patients with Parkinson's Disease

نویسندگان

  • Juan Camilo Vásquez-Correa
  • Juan R. Orozco-Arroyave
  • Elmar Nöth
چکیده

Speech impairments are one of the earliest manifestations in patients with Parkinson’s disease. Particularly, articulation deficits related to the capability of the speaker to start/stop the vibration of the vocal folds have been observed in the patients. Those difficulties can be assessed by modeling the transitions between voiced and unvoiced segments from speech. A robust strategy to model the articulatory deficits related to the starting or stopping vibration of the vocal folds is proposed in this study. The transitions between voiced and unvoiced segments are modeled by a convolutional neural network that extracts suitable information from two time–frequency representations: the short time Fourier transform and the continuous wavelet transform. The proposed approach improves the results previously reported in the literature. Accuracies of up to 89% are obtained for the classification of Parkinson’s patients vs. healthy speakers. This study is a step towards the robust modeling of the speech impairments in patients with neuro–degenerative disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Behavioural aspects of a modified crosstalk between basal ganglia and limbic system in Parkinson's disease.

Dysfunctions in dopaminergic neurotransmission lead to motor symptoms and cognitive impairments associated with behavioural disturbances. Parkinson's disease is a neurodegenerative disorder which is primarily characterized by an abnormal basal ganglia activity. Recently, increased attention has been directed towards the hippocampus in the development of non-motor symptoms. Given the temporal pr...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017